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In many biological science and food processing applications, it is very important to control or modify
pH. However, the complex, unknown composition of biological media and foods often limits the utility
of purely theoretical approaches to modeling pH and calculating the distributions of ionizable species.
This paper provides general formulas and efficient algorithms for predicting the pH, titration, ionic
species concentrations, buffer capacity, and ionic strength of buffer solutions containing both defined
and undefined components. A flexible, semi-mechanistic, partial buffering (SMPB) approach is
presented that uses local polynomial regression to model the buffering influence of complex or
undefined components in a solution, while identified components of known concentration are modeled
using expressions based on extensions of the standard acid-base theory. The SMPB method is
implemented in a freeware package, pHTools, for use with Matlab. We validated the predictive accuracy
of these methods by using strong acid titrations of cucumber slurries to predict the amount of a weak
acid required to adjust pH to selected target values.
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INTRODUCTION

The ability of acids, bases, or amphoteric compounds, such
as amino acids, to be substrates for enzymes, to act as signaling
molecules, to move through cell membranes, or to function in
other biological processes is dependent upon their being in the
correct state of ionization. Therefore, it is often necessary to
know the distribution of ionic species when doing microbiologi-
cal and biochemical research with foods or other biological
systems. A general approximation for the concentrations of ionic
species, particularly in complex systems, may be obtained by
calculations involving the pKa values for all ionizable groups
on all molecules, the pH, and ionic strength in the solution.
These calculations can be done using the algebraic methods
described by Butler and Cogley (1) when the concentrations of
ionizable components are known. However, when experiments
involve solutions with greater complexity than one or two
components with single ionizable groups, the calculations rapidly
become quite complex.

In addition to known components with ionizable groups,
biological and food systems typically contain unknown com-
ponents that contribute significantly to the buffer capacity. There
are no general methods to calculate the distributions of ionic
species of the known components in systems that also contain
unknown components. Recent attempts to carry out such
calculations are limited in scope. Horiuchi et al. (2) used a three-
layer neural network with a back-propagation algorithm to model
changes in product distribution as a function of pH in chemostat
cultures. This method involved training the neural network
during controlled step changes in pH. Once trained, the neural
network can predict transient changes in product distribution
for continuously varying pH. A limitation of this method is that
training the neural network can be expensive, and alterations
in protocol may require re-training to maintain an acceptable
level of accuracy.

Van Vooren et al. (3) introduced a method called “automatic
model building” to accomplish similar goals. This method
attempts to infer the dissociation constants and concentrations
of simple buffer components present in a complex buffer
solution by estimating individual pKa and concentrations of
potential components from buffer capacity curves. A database
of potential components is available. Limits can be placed on
the number of components to be estimated to control the overall
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complexity of the resulting model. A limitation of this method
is that, since control of model complexity is not completely
data-driven, overly complex models can result.

The desire to model buffer properties in a comprehensive
yet robust manner is motivated by the need to test hypotheses
in complex systems. For example, this laboratory recently
proposed a new hypothesis for the ability of protonated species
of organic acids to elicit sour taste (4). Development and testing
of this hypothesis required the ability to determine the concen-
trations of the protonated and nonprotonated organic acid species
of multiple mono-, di-, and tricarboxylic acids in solutions of
different pH and ionic strength. It was also necessary to estimate
the concentrations of multiple acid species in pickled cucumbers
and sauerkraut to determine if this hypothesis could be applied
to food systems. Calculation of protonated acid species in
solutions with three organic acids that contained a total of four
to seven ionizable carboxyl groups was required to test the
hypothesis (5). Bjornsdottir et al. (6) investigated the effect of
fully protonated mono-, di-, and tricarboxylic acids on the
survival of the acid-tolerant pathogenEscherichia coliO157:
H7 at constant pH and ionic strength in a noninhibitory gluconic
acid buffer (7). The calculations required to determine the
concentrations of protonated acid species for these investigations
were done using a new approach to modeling complex buffer
systems implemented aspHTools in MATLAB, a commonly
used modeling software package.

The pHTools software implements and extends the algebraic
approach originated by Van Slyke (8) and formalized and
expanded by Butler and Cogley (1). These earlier investigators
demonstrated that simple nonlinear equations could be used to
describe ionic equilibria and, therefore, predict the titration curve
and buffer capacity of mixtures of acids and bases, including
polyvalent and amphoteric molecules. The Davies equation or
a modified form of the equation have been shown to accurately
adjust for the effects of ionic strength up to 0.5 (12) or 1.2 (13),
temperature, and dielectric properties on the ionization constants
of buffering molecules.

Although quite general, these approaches are not applicable
to complex biological systems, such as foods that typically
contain many components that contribute significantly to
buffering but are not identified or are of unknown concentration.
When dealing with the compositional complexity of biological
materials, the diversity of ionizable molecules means there will
be many dissociation constants in almost any situation. However,
as a result of this complexity, titration curves of biological
materials tend to become smooth and relatively linear. Advan-
tage was taken of these characteristics of titrations curves of
complex materials by using local polynomial regression (9) to
model the partial contribution to a titration from components
with unknown concentrations or unknown dissociation constants.
The distributions of ionic species from components with known
concentration and dissociation constants, whether naturally
present or added, can then the estimated in biological systems.
The use of generalized cross-validation in selection of the
smoothing parameter of the local regression allows for automatic
control of model complexity. A nearest-neighbor bandwidth is
employed to account for unequally spaced points in the titration
data. Iteratively, re-weighted least squares are used to down-
weight the influence of outlier data points. Since this local
polynomial regression approach has been combined with the
theoretical approach to ionization and buffer calculations of Van
Slyke (8) and Butler and Cogley (1) for components with known
dissociation constants and total concentrations, this hybrid

approach is referred to as the semi-mechanistic partial buffer
(SMPB) approach.

The objective of this paper is to describe in detail the
mathematical basis of thepHTools software and then to
demonstrate the use of the SMPB approach to predict the
amounts of different acids required to adjust pH in cucumber
slurries.

MODELING METHODS

Generalizing Moles of Base Added (Cb). The central
quantity of interest in modeling the properties of a buffer is the
moles per liter of base added (Cb) to a solution (Note: Acid
addition gives a negativeCb). Of particular interest to modeling
buffers are the following: (i) a titration curve determines how
Cb varies as a function of pH, (ii) buffer capacity is the partial
derivative ofCb with respect to pH (8), and (iii) the initial pH
of a solution corresponds to the pH at whichCb is equal to
zero. When the dissociation constant(s) and total concentration
of a buffer component are known,Cb may be related to pH by
considering the Henderson equation for the dissociation step-
(s), along with the mass and charge balances of the solution
(1). For an acid with a single dissociable proton, the Henderson
equation is

where Ka is the dissociation constant, [H+] is the molar
concentration of protons, [A-] is the molar concentration of
acid anions, and [HA] is the molar concentration of the
protonated acid. A more general expression that accounts for
activities of each of the molecules will be discussed below. In
aqueous solution withCb moles of base (BOH) per liter andC
moles per liter of acid ([HA]+ [A-]), the aqueous charge
balance is

Combining these two expressions, it is found that

whereKw is the ion-product “constant” of water (1.00× 10-14

(mol/L)2 at 25 °C, 1 atm, and 0 ionic strength). By similar
arguments,Cb for an acid having two dissociable protons is (2)

For an acid containing an arbitrary number of acidic and basic
sites of dissociation, it can be shown that the titration can be
modeled as [Proof is by induction and is given in Dougherty
(10).]:

wheren represents the number of pKa (acidic sites of dissocia-
tion) andN represents the total number of sites of dissociation

Ka )
[H+][A -]

[HA]
(1)

[B+] + [H+] ) [OH-] + [A-] (2)

Cb ) C
Ka

[H+] + Ka

+
Kw

[H+]
- [H+] (3)

Cb ) C
[H+]Ka1 + 2Ka1Ka2

[H+]2 + [H+]Ka1 + Ka1Ka2

+
Kw

[H+]
- [H+] (4)

Cb ) C

∑
i)1

N

[(n + 1 - i)[H+] i-1 ∏
j)1

N+1-i

Kaj]

∑
i)1

N+1

[[H+](i-1) ∏
j)1

N+1-i

Kaj]

+
Kw

[H+]
- [H+]

(5)
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(number of pKa plus number of pKb). In cases whereKb are
required (basic sites of dissociation), thejth Kb must be
converted to aKa using the relation:

Note that in this formulation, just as in eqs 3 and 4, each
term in the summation corresponds to the partial contribution
of each ion of the buffer to the overall titration. The quantity
(Kw/[H+]) - [H+] represents the contribution to the titration
from the dissociation of water into hydroxyl ions and protons,
and the value (n + 1 - i) may take on negative values and
accounts for the effects of the basic sites of dissociation on the
charge balance.

A more general formulation is required to handle buffers that
are associated with electrolytes (e.g., Ca2+, Mg+, Cl-). Such
buffers are usually referred to as being the “conjugate acid” or
“conjugate base” form, although this terminology is somewhat
imprecise and can lead to confusion. Some common examples
include monosodium phosphate (NaH2PO4) and calcium lactate
(Ca[lactate]2). The charge balance equation must account for
these electrolytes or so-called “counterions.” The consequence
of this in terms of a model forCb is the following:

whereVk is the signed charge on thekth counterion andnc is
the total number of counterions per formula unit of the buffer.
Thus, if the counterion is positive, there is a reduction in moles
of base added, and if it is negative, there is an increase in the
moles of base added. For example, an acid in its conjugate base
form having a positive counterion has a higher initial pH when
put into solution, while the opposite is expected for bases in
their conjugate acid form. In general, the association of an acid
or base with electrolytes simply shifts theCb curve vertically
by an amount proportional to the sum of the signed charges of
the electrolytes.

The advantage of this general formulation is that other general
quantities of interest can be derived from it. SinceCb is derived
on the basis of charge balance, it is easy to modify eq 7 to
provide a general equation for the concentration of each species
of the acid in the buffer solution. This is done by recognizing
that the (n + 1 - i) factor represents the charge of theith ion
in the summation. By setting this factor to 1, the concentration
of the ith ion is obtained in theith term of the summation. Thus,
the concentration of the acid ion with charge (n + 1 - i), which
is denotedC(n+1-i), is given by

The concentration of the nonionic form of the acid is determined

by subtraction of the concentrations of all the ionic forms of
the acid from the total concentration (C):

The concentration of electrolyte is simply the product ofC and
the number formula units of the electrolyte.

A general formula for the ionic strength contribution from
the acid is also easily obtained from eq 7. The ionic strength of
a solution is defined (2) as

wherezi is the charge on theith ion in the solution andm is the
total number of ions in the solution. Therefore, if the term (n
+ 1 - i) in eq 7 is squared and the summation is multiplied by
1/2, a general formula for ionic strength contributions from the
acid and water is obtained:

Each term in the summation of eq 11 represents the partial
contribution of each ionic form of the buffer to the overall ionic
strength as well as contributions from thenc electrolytes. The
uncharged form of the buffer (which may include zwitterions)
is assumed to not contribute to the ionic strength and is ignored.
When calculating the total ionic strength of a solution, it is
important to not neglect the contribution of ions from the titrant.
For example, if one assumes a+1, -1 electrolyte such as HCl
or NaOH, then the ionic strength contribution from that titrant
is equal toCb/2. For more “general titrants” including 2-1-1
electrolytes, etc. or titrants containing complex or unknown
components, the reader is referred to next section, which
concerns generalized titrations.

Generalizing Buffer Capacity. Along with the fact that
(d[H+]/dpH) ) -ln(10)[H+], eq 7 can be differentiated with
respect to [H+] to give a formula for the buffer capacity,â, of
a buffer containingN dissociable groups:

where

Kaj )
Kw
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[H+]2
- 1] (12)
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Note that terms corresponding to ions from neutral salt are
absent since these are assumed to not vary as a function of pH.

The above approaches may also be extended to mixtures of
buffers. Since the Bronsted-Lowry theory is assumed, each of
the dissociation steps among the acids and bases in a solution
is independent, except for the common ions (H+ and OH-). As
a consequence, the contribution from each of the buffer
compounds (each of which may have multiple acidic or basic
dissociation sites) is summed with the contributions from the
dissociation of water included only once.

Ionic Strength, Temperature, and Dielectric Corrections.
It is well-known that the dissociation relation in eq 1 is only an
approximation (11). In fact, each of the ions has associated with
it an activity coefficient,γ:

It is also true that pH) [H+]γ+, but this fact is often ignored
since pH meters measure hydrogen ion activity. The activity
coefficients depend primarily on the ionic strength, the tem-
perature, and the dielectric properties of the solution. Other
important factors include the charges of the ions involved and
their atomic radii. Although theoretical developments have been
undertaken that account for all of these factors, acceptable and
sometimes more accurate estimates have been obtained using
the Davies equation (12) or one of its modifications (1). This
is especially true for low to moderate ionic strengths. The Davies
equation provides accurate estimates of activity coefficients for
a wide range of electrolyte solutions up to ionic strength 0.2-
0.5 M (1, 11, 13). For the charged ion pairs in the numerator of
eq 17, the geometric mean of the single ion activities is
calculated by

where thez* are the unsigned charges on the ions,A ) 1.825
× 106 (εT)-3/2, ε is the dielectric constant of the solvent (ε )
78.3808 for water (9)), T is the temperature in Kelvin, andb is
the “salting-out” parameter. However, if a molecule is neutral
(as in the denominator of eq 1) the activity is predicted by

Thus, we suggest that a tabulated pKa value (pKa
tab), which was

measured under one set of conditions may be corrected to a
pKa under a new set of conditions (pKa

new) using the formula:

Most tabulated pKa and pKb are estimates that have been
extrapolated to zero ionic strength and so this formula simplifies
to

For molecules with multiple pKa, the denominator term of the
Henderson equation is not always neutral. In such cases, eq 18
is usually replaced by an approximation of the form:

Az2(xI/(1 + xI) - bI) with the appropriate nonzero chargez.

Although the Davies equation can be used to calculate activity
coefficients, it requires ionic strength as an input. The activity
coefficients, however, affect the extent of dissociation in the
buffer components, which in turn affects ionic strength. To
achieve optimal activity coefficient predictions in such a coupled
system, an iterative refinement procedure was employed.
Convergence of activity coefficient estimation usually occurred
after three to four iterations.

The Davies or Samson equation can be used to predict the
effect of the dielectric properties of the solvent on the buffer
properties. Unfortunately, there are currently no general math-
ematical models for predicting the dielectric constant of a buffer
solution as a function of its composition. It is known, however,
that the dielectric “constant” varies with temperature, density,
concentration of ions, and physical properties of the ions in
solution (14). The only general approach currently available is
to utilize tabulated empirically measured values of dielectric
constants for buffer solutions or to measure the dielectric
constant directly. Datta et al. (15) tabulated dielectric properties
from many different literature sources for many different foods.
Nelson and Datta (14) gave dielectric properties of several fresh
fruits and vegetables and milk products. However, different
measurement techniques give somewhat different values for
complex mixtures, and, although single pure compounds have
been well-studied, the interactions of various food components
are poorly understood (15).

Properties of Complex Buffers.The equations given in the
preceding sections are applicable as long as the concentrations
of all acids and bases and their dissociation equilibria are known.
Unfortunately, these requirements are usually not met in food
and biological applications due to the complexity and undefined
nature of the systems. Although the buffer capacities of such
solutions can be quite complex chemically, it is reasonable to
assume that the relationship betweenCb and pH should be
smooth and continuous. While a titration can be used to
determine the relationship betweenCb and pH, the accuracy of
pH measurements is typically limited to(0.01 units in common
laboratory settings. It is also not possible to observe the effect
of adding a small amount of base at every pH value for which
a prediction of Cb is desired. A flexible regression procedure
is, therefore, required that will provide a continuous dif-
ferentiable prediction function for anyCb given pH.

Generalized Additive Modeling of Complex Buffers. In
the previous section, the additivity ofCb was noted. This will
be used to advantage here where a solution is assumed to contain
both simple and complex buffer components. LetCbi be the
sum of the contributions from the simple and complex buffer
components at pHi. Thus, a titration data set consists of the
ordered pairs (pHi, Cbi), i ∈{1, 2, ...,Q}, whereQ is the total
number of data points in the titration. It is assumed that there
are M simple buffer components where thejth one hasNj

dissociable groups,nj acidic groups, andncj electrolytes per
formula unit, and there is also a complex buffer component.
Then the following model can describe theCb relation:

A′ ) C∑
i)2

N

[(n + 1 - i)(i - 1)[H+] i-2 ∏
j)1

N+1-i

(Kaj)] (15)

B′ ) ∑
i)2

N+1

[(i - 1)[H+] i-2 ∏
j)1

N+1-i

(Kaj)] (16)

Ka )
[H+]γ+[A-]γ-

[HA] γ0

(17)

-log10(γ() ) A|z+z-|( xI

1 + xI
- bI) (18)

-log10(γ0) ) -bI (19)

pKa
new ) pKa

tab - 2 log10(γ(
new

γ(
tab) + log10(γ0

new

γ0
tab) (20)

pKa
new ) pKa

tab - 2 log10(γ(
new) + log10(γ0

new) (21)
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where [H+] ) 10-pHi, εi is a random error assumed to come
from a Gaussian distribution with zero mean and unknown
varianceσ2, andF(pHi) is the contribution from the complex
media in which the weak acids are dissolved. Since this model
blends both theoretical and statistical models of partial buffer
components, we have called it the semi-mechanistic partial
buffer (SMPB) model. To fit this model to titration data, the
following algorithm is employed. First, the simple buffer
contributions (eq 7), which are assumed to be known without
error, are subtracted from the observedCbi. The result of this
subtraction is the unexplained partial contribution toCbi from
the unknown components. Then,F(pHi) is regressed on the
partial contribution toCbi from the unknown components using
local polynomial regression. This entails estimating a global
smoothing parameter by generalized cross-validation. Briefly,
as the smoothing parameter is decreased, F(pHi) tends to
interpolate theQ data points and approaches a (Q - 1)th order
polynomial. For larger values of the smoothing parameter,
F(pHi) smooths the data and approaches apth order polynomial
wherep is the underlying order of polynomial model being used.
Since a titration requires careful execution and may be sensitive
to human error either in preparation of the titrants or in
dispensing of the aliquots, it is desirable to have an automatic
method for dealing with outliers. Thus, the final step in the
algorithm utilizes iteratively reweighted least squares (IRWLS)
to down-weight data corresponding to large residuals (16).
However, during a titration it may be desirable or necessary to
focus pH readings in regions of the titration curve, where the
pH is changing relatively fast while sampling less densely in
other regions. To account for unequal sampling, a nearest-
neighbor bandwidth is used (9).

Buffer Capacity of a Complex Buffer. An estimate of the
buffer capacity of a complex buffer is easily obtained from the
least-squares estimate ofCb outlined above. Since at each pH a
polynomial of degreep is fit to the data, the partial derivative
of F with respect to pH evaluated at pHi is estimated by

whereb̂1,2 is the second parameter (i.e., specifically the linear
term in the polynomial) estimated at the point pHi. This partial
contribution to the buffer capacity from the complex components
is then added to the contributions from the simple components
and water (see eqs 12-16) to give an estimate of the total buffer
capacity. Since an estimate of the first derivative ofCb is needed
for calculating the buffer capacity, the order of the underlying
polynomial model (p) must be at least 1 (linear).

Lower Bound for the Ionic Strength Contribution From
Complex Buffers. Since there are ionic species in complex

buffers, the ionic strength will be greater than zero. A lower
bound for the ionic strength contribution from a complex buffer
can be estimated. Consider the charge balance of a solution of
NaOH andC mol/L of mono-protic weak acid HA:

which is rearranged to giveCb:

Comparing this to the ionic strength of the solution:

it is noticed thatI ) Cb + [H+]. Unfortunately, this relationship
does not hold in the presence of buffers with multiple dissociable
groups or salts with counterions with charges greater than 1 or
-1 are present because of the squaring of charges in eq 11.
However, from comparing eqs 7 and 11, it is clear thatI g
(1/2)Cb + [H+]. Since this lower bound may be negative, we
suggest max(0, (1/2)Cb + [H+]) as a lower bound for the ionic
strength contribution from complex buffer components. We view
this as a convenient improvement over the zero ionic strength
assumption.

Generalized Titrations. Normally, titrations are performed
using strong acids or strong bases. Because these titrants
dissociate essentially completely, their contribution toCb is
easily calculated (seeFigure 1A). In many instances, (e.g., food
applications) weak acids or bases are used instead of strong
acids or bases to adjust pH. To use data from such titrations in
calculating buffer capacities, a more general approach to
calculatingCb must be taken. When a weak acid or weak base
is used as the titrant, the process of inferring a relationship
between pH andCb will be referred to as a generalized titration.
The contribution toCb from a weak acid or base will vary
depending on the extent to which it dissociates and, thereby,
depend on the pH and the ionic strength (seeFigure 1B). For
clarity, let Cb(pH) indicateCb at a particular pH. If the partial
contribution of the weak titrant toCb(pH) is denoted byCτ-
(pH) then

That is, the moles of base added is the negative of the moles of
base that would be required to bring the bufferτ to the pH in
question. Similarly, for complex buffers containing more than
one buffering compoundτ1, τ 2, ..., the additivity of the partial
Cb can be exploited and the following definition made:

That is, the number of moles of base added per liter is equal to
the negative of the sum of the contributions from the weak acids
or bases. In such a context, it is possible to use a complex buffer
as a titrant. To illustrate these points, considerFigure 1A, which
is a plot of the partialCb of a 0.01 M NaOH solution over the
pH range 2-12. Over this interval, the contribution toCb

remains a constant 0.01 M because NaOH is a strong base and
its dissociation is essentially complete over this pH range. In
contrast, considerFigure 1B, which gives the partial contribu-
tions to Cb from a 0.01 M solution of gluconic acid (pKa 3.6).
At low pH, this weak acid is completely protonated and,

Cb(pHi) ) ∑
j)1

M (Cj∑
k)1

Nj

[(nj + 1 - k)[H+]k-1 ∏
l)1

Nj+1-k

Kajl]

∑
k)1

Nj+1

[[H+](k-1) ∏
l)1

Nj+1-k

Kajl]

+

Cj∑
kj)1

ncj

Vkj) +
Kw

[H+]
- [H+] + F(pHi) + εi (22)

∂F̂
∂pHi

) b̂i,2 (23)

[Na+] + [H+] ) [OH-] + [A-] (24)

[Na+] ) [A-] + [OH-] - [H+] (25)

Cb )
CKa

Ka + [H+]
+

Kw

[H+]
- [H+] (26)

I ) 0.5([Na+] + [OH-] + [A-] + [H+]) (27)

Cb(pH) ) -Cτ(pH) (28)

Cb(pH) ) -(Cτ1(pH) + Cτ2(pH) + ... + Cτn(pH)) (29)
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therefore, makes no contribution toCb. Conversely, at high pH
all of the gluconic acid is dissociated and its contribution toCb

approaches an amount equivalent to the negative of its concen-
tration (i.e., the conjugate base of a weak acid is a strong base).
Clearly, to determine the moles of base available for titration,
the dissociation of the weak titrant at the particular pH in
question needs to be considered. Thus, for generalized titrations,
determination of a mathematical relationship betweenCb and
pH requires a function which maps pH toCb (an approach which
at first may seem counter-intuitive to those acquainted only with
strong acid or strong base titrants). It is therefore our convention
to treat pH as the predictor variable andCb as the response
variable.

Initial pH Determination. SinceCb represents the moles of
base added per liter of titrant as a function of pH, it is possible
to useCb to determine the initial pH of a simple or complex
buffer. Consequently, determining the initial pH of a simple
buffer requires finding the zero of a polynomial where the order
of the polynomial is equal to the maximum number of
dissociable groups of any molecule in the solution. For complex
buffers, determination of the initial pH is similar and requires
finding the zero of the additive model:

In either case, numerical methods are generally required. Any
standard scalar zero-finding algorithm is generally sufficient.
We have found good success with the standard Nelder-Mead
simplex method (17). However, since pH can theoretically take
any value (0 to 14) andCb(pH) can be somewhat flat near pKa,
we have implemented Nelder-Mead with optional upper and
lower bounds on the pH.

pH Adjustment to Target Values. It is often desirable to
determine the amount of a primary buffer (simple or complex)
to add to a secondary buffer (simple or complex) to attain a
target pH. The first approach one may think of is to use an
iterative approach where an amount of the primary buffer is
guessed and then the initial pH of the mixture is determined. If
this pH is further from the target pH than some tolerance, an
improved guess is generated. Upon iteration of this process one
should arrive at the desired amount. Although such an approach
will work, it is computationally wasteful since an additional
optimization (initial pH determination) is required at each step.
A better method is to find the amount of the primary buffer
such that theCb of the mixture when evaluated at the target pH
is zero. This slight modification achieves the same result, but
does not require a separate optimization at each iteration. Again,
any standard scalar root-finding algorithm should suffice for
carrying out such an optimization and we have had good results
using the Nelder-Mead simplex method.

The predicted amounts of required primary buffer are
sensitive to errors in titration. This is especially so when
attempting to realize a target pH that is in a range where the
titrant’s buffer capacity is low. A contributing factor to this
variability is the limited accuracy of pH meters. The accuracy
of most laboratory pH meters is(0.01 pH units. A more
conservative approach is to estimate the amounts required at
(δ from the target pH, whereδ is an acceptable measure of
pH meter sensitivity. Such an approach allows a researcher, for
example, to be fairly confident about adding the amount
corresponding to the lower estimate and then carefully adjusting
to the target pH by addition of buffer.

The methods developed above provide a transparent means
of using the computational formulas given for buffers with
known dissociation constants and extending them to complex
buffers containing both known and undefined components. The
Appendix describes a general database framework that allows
application of these methods to a wide range of both types of
buffers. In the next section, we validate these approaches in
experimental setting.

MATERIALS AND METHODS

Standard titrations of fresh cucumber slurries were done with a strong
acid, HCl. The amounts of four weak acids required to reach certain
target pH values were calculated using the generalized titration

Figure 1. (A) Partial contributions to Cb from the components of a 0.01 M NaOH solution. The partial Cb (solid line) is nearly constant and represents
the amount of the species available for titration. (B) Partial contributions to Cb derived from the components of a 0.01 M gluconic acid solution. The
partial Cb (solid line) is the relevant quantity in a generalized titration since it represents the amount of the species available for titration.
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approach. Then the amounts of weak acids required to reach the target
pH values were determined experimentally and compared to the
predicted amounts of weak acids. Acids and NaCl were reagent grade
from Sigma-Aldrich (St. Louis, MO). Solutions were prepared with
deionized water. Four lots of size 2A (25-32 mm diameter) fresh
cucumbers were supplied by a local commercial processor.

Cucumbers were blended for 2 min in a Waring blender (Conair
Corporation, Torrington, CT). Slurries for titration were prepared by
mixing blended cucumbers with an equal weight of water. Duplicate
slurries (100 g each) from each of three lots of cucumbers were titrated
with standardized 2.843 M HCl at 25( 1 °C. A slurry was constantly
stirred on a magnetic stir plate as at least 25 aliquots of HCl solution
were accurately dispensed into the slurry with motorized microliter
pipets (Rainin Instruments, Oakland, CA). The pH of a slurry was
measured and recorded before addition of HCl and then after addition
of each aliquot of HCl. The pH was determined using an Accumet
Research AR25 pH meter with an AccuFet solid-state electrode (Fisher
Scientific, Atlanta, GA). The relative accuracy of the meter was(0.002
pH units. Standardization of the pH meter was done at 25°C with pH
4.00 ( 0.01 and pH 7.00( 0.01 standard buffers. Titrations were
carried out starting at the natural pH of the cucumber slurry (ap-
proximately 6.4) and continued until the pH decreased to at least 2.6.
Data points from all six HCl titrations (two slurries from each of three
lots of cucumbers) were entered intopHTools, along with temperature,
ionic strength, and, if known, dielectric constant. Titration data were
fitted using local polynomial regression to obtain a single calibration
titration curve to make predictions for pH adjustments with other acids.

The millimoles of acetic acid, malic acid, citric acid, and phosphoric
acid required to achieve target pH values of 4.50, 4.00, 3.70, and 3.30
in cucumber slurry samples with water only and with 0.3 M NaCl were
predicted usingpHTools based upon the HCl calibration titration curve.
Triplicate slurry samples from a lot of cucumbers different from the
three lots used for HCl titration were prepared with and without the
addition of 0.3 M NaCl. Solutions of 3.05 M acetic acid, 1.52 M malic
acid, 1.01 M citric acid, and 2.21 M phosphoric acid were used as
titrants. The predicted and experimental amounts of each acid required
to hit the four target pH values were plotted as a function of pH.

The dielectric constant of cucumber slurries was determined with a
digital network analyzer (HP 8753C, Agilent Technologies, Palo Alto,
CA) with an open-ended coaxial probe (HP 85070B, Agilent). The
instrument was calibrated with air using the procedure recommended
by the manufacturer. The instrument was allowed to equilibrate for 2
h before measurements were made. Data were acquired with a PC-
compatible computer equipped with a National Instruments GP-IB card
(National Instruments, Austin, TX) and the HP 85070B v. 1.0 software
provided with the instrument.

RESULTS AND DISCUSSION

Dielectric Constant of Cucumber Slurries.The dielectric
constant for cucumber slurries was 78.01( 0.03 without
addition of NaCl. When 0.3 M NaCl was added to cucumber
slurries, the dielectric constant was 74.27( 0.94. This compares
to a dielectric constant of 78.38 for water (11).

Comparison of Predicted and Measured Amounts of
Acids. Figure 2shows the calibration curve of fresh cucumber
slurry used to predict the amount of titrant required to acidify
slurries in the presence and absence of 0.3 M NaCl to pH 4.5,
4.0, 3.7, and 3.3. Duplicate titrations were very close, but there
were differences among lots of cucumbers as would be expected
for different lots of fresh produce.

Figure 3 shows the experimental and predicted quantity of
titrant required to reach various target pH values in cucumber
slurries prepared without addition of salt by addition of
deionized water to the blended cucumbers. Bars on the predicted
curves show how much the predicted amount of acid changes
with a (0.05 pH unit increase or decrease in the target pH.
The error bars on the experimental curves show the standard
deviation for pH adjustments on triplicate samples of cucumber

slurry. Predictions are reasonably close to the amount of acid
required to reach the target pH for all four acids at all four target
pH values. The largest deviations betweenpHTools predictions
and the amounts of acid required experimentally were observed
for phosphoric acid. Deviations were in the direction of
underestimating the amount of phosphoric acid required and
increased as pH decreased. The underestimation was 16% at
pH 3.30.

The use of the Davies equation inpHTools is illustrated in
Figure 4 to mathematically account for changes in ionic strength
when salt, in addition to acids, was added to cucumber slurries.
Addition of salt increases the dissociation of acids (lowers the
pKa values) so that less acid is required to lower pH to
designated target values. This can be seen in a comparison of
Figures 3 and 4 for each acid used for pH adjustment. The
pHTools calculations gave reasonable predictions for the amounts
of acetic, malic, citric, and phosphoric acids required to reach
the target pH levels of 4.5, 4.0, 3.7, and 3.3 when salt was added.
This result indicates that the Davies equation reasonably
accounts for ionic strength changes with a complex buffer
system like a cucumber slurry. The errors in the predicted
amount of acids required were in the direction of over estimating
the amount of acid required to lower pH. There was an over-
prediction of about 2 mM in the amount of citric acid required
over the pH range of 3.1-4.5. For malic acid and phosphoric
acid, deviations were larger at the higher pH values and became
smaller at lower pH.

The combination of local polynomial modeling of the
complex buffer components with the theoretical modeling of
simple buffer components has been found to provide a general
and robust method for predicting species concentration, buffer
capacity, and carrying out target pH optimizations. Applications
of this approach have already been seen by this laboratory in
suggesting a novel hypothesis for the chemical basis of sour
flavor (4, 5) and in studying the effect of fully protonated
organic acid molecules on the mortality ofE. coli O157:H7 in
low pH solutions (6). In the future, it will be important to
determine the effects of preservative acids on pathogen survival
in food products as well as in defined buffer solutions. In
addition to its use in calculation of the distribution of the
different protonated forms of compounds with ionizable groups,
pHTools may be useful for subtracting the buffer contribution
of known components from the titration curves of biological
materials in order that it could be determined how much of the
buffer capacity is a result of unknown components in the system.

Figure 2. Titration curves of duplicate samples (same symbols) from three
lots (different symbols) of cucumbers. Solid line is the average titration
curve.
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The pHTools software for use in MATLAB may be down-
loaded at http://www.mathworks.com/matlabcentral/fileexchange
/index.jsp. The software allows a user to build and share
databases of titrations relevant to their research (see Appendix).

APPENDIX

Tableau Approach for Modeling Buffers. To cover the
variety of Bronsted-Lowry-type buffers possible, a tableau
approach was used to specify each acid and base. For purposes

of standardization and ease of implementation, we assume that
the information in the tableau always refers to the buffer as it
is found in its “native form” (i.e., the form in which it exists
prior to be placed in aqueous solution). This is necessary to
discriminate the various formulations available from chemical
supply companies, most notably with regard to salts of conjugate
acid and conjugate base formulations as described inTable 1.

The three components of the tableau approach are (i) PKA,
(ii) PKB, and (iii) SALTTYPE. As the names suggest, the PKA

Figure 3. Comparison of experimental amounts of acids required to adjust 100 g of cucumber slurries without added NaCl to target pH values with the
amounts of the acids predicted by pHTools. Error bars on the experimental data show the standard deviation of titration of duplicate samples. Error bars
on the predicted values show the predicted amounts of acids ±0.05 pH unit of the target pH.

Figure 4. Comparison of experimental amounts of acids required to adjust 100 g of cucumber slurries with 0.3 M added NaCl to target pH values with
the amounts of the acids predicted by pHTools. Error bars on the experimental data show the standard deviation of titration of duplicate samples. Error
bars on the predicted values show the predicted amounts of acids ±0.05 pH unit of the target pH.
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component stores the (typically) zero-extrapolated-log(Ka), the
PKB component stores the zero-extrapolated-log(Kb), and the
SALTTYPE component stores the charges associated with the
ions that result upon solvation (i.e., acids or bases ionically
bound to electrolytes, the electrolytes of salts, etc.). Although
pKa and pKb may be interconverted, it is the convention of the
tableau approach that pKb are only used to represent basic
dissociations (i.e., lead to conjugate acids more positively
charged than the native form of the buffer). For a given buffer,
each of these components is represented as a list of numbers
separated by brackets ([ ]). The number of brackets in the PKA,
PKB, and SALTTYPE components is, therefore, always equal.
We illustrate the usage of this tableau approach with the
following buffers: acetic acid, calcium lactate, cysteine, sodium
bicarbonate and magnesium chloride.

The native form of acetic acid is not a salt, so it gets just 1
bracket and has a single dissociable proton with pKa ) 4.75.
Lactic acid is an acid with a single dissociable proton with pKa

) 3.86. In this formulation, lactic acid is in its conjugate base
form with two lactic acid anions being ionically bound to a
single calcium cation. Cysteine is an amino acid with a
carboxylic acid group with pKa ) 1.8, a basic amino group with
pKb ) 3.2, and an acidic R-group (a thiol) with pKa ) 8.3.
Interestingly, for intermediate pH values the amino group can
take on a positive charge, while the carboxylic acid can take
on a negative charge, and the thiol R-group is uncharged.
Zwitterionic molecules carrying simultaneous positive and
negative charges are easily handled by the tableau approach.
Sodium bicarbonate is a conjugate base of carbonic acid (H2-
CO3) that is ionically bound to sodium and has two dissociable
protons with pKa ) 6.37 and 10.31. Magnesium chloride is a
salt. Once in aqueous solution the two chloride ions and the
magnesium ion dissociate. None of the resulting ions have sites
for acid or base dissociation.

It should be noted that buffers in the database may have all
components left as empty brackets. In such cases, the buffer is
typically a mixture of other defined buffers or may be associated
with a local polynomial regression of experimental titration data
(complex buffer).
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Table 1. Tableau Approach

acetic calcium lactate cysteine sodium bicarbonate magnesium chloride

pKa [4.75] [ ], [3.86], [3.86] [1.8, 8.3] [ ], [6.37, 10.31] [ ], [ ], [ ]
pKb [ ] [ ], [ ], [ ] [3.2] [ ], [ ] [ ], [ ], [ ]
salt type [ ] [2], [−1], [−1] [ ] [1], [−1] [2], [−1], [−1]
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